
Full Disclosure mailing list archives
Re: Rapid integer factorization = end of RSA?
From: "e.chukhlomin" <chukh29ru () infoline su>
Date: Thu, 26 Apr 2007 22:31:08 +0400
xxx xxx wrote:
Lemma: p*(-q)=p*q*(-p) and respective: (-p)*q=p*q*(-q) Proof: p*(-q)=p*(N-q) - by the data, then p*(-q)=p*(p*q-q)=p*pq-p*q=p*q*p-p*q=(p-1)*(p*q) (-p)*q=q*(N-p) - by the data, then (-p)*q=(p*q-p)*q=p*q*q-p*q=p*q*q-p*q=(q-1)*(p*q) Q. E. D. Like Stanislaw said before be, this Lemma is obvious. You're saying that 0=0, and man, this is a thautology! You ask why? let N = p*q. Then, p*q = 0 mod N Now, let be -1 the opposite of the unit ( usually called e...) 0 = (-1)*0 = (-1)*p*q = (-1*p)*q = (-p)*q 0 = 0*(-q) = p*q*(-q) Gypothesis: Let N = p*q = A1*B1 + A2*B2... + An*Bn Then exists some subset(A1...An) and respective subset(B1...Bn), which satisfies for equality: A1*(-B1)+A2*(-B2)...+An*(-Bn) = p*(-q)=p*q*(p-1) or A1*(-B1)+A2*(-B2)...+An*(-Bn) = (-p)*q=p*q*(q-1) This is another obvious thing! if N = sum(A_i*B_i), then -N = -1*N = -1*sum(A_i*B_i) = 0 mod N and, for the distributive propeties, -1*sum(A_i*B_i) = sum (-1*A_i*B_i) = 0 mod N If found such (A1...An) and (B1...Bn), we can find p or q by dividing p*(q-1) on p*q: p*(q-1)=p*q*(p-1) => (p*(q-1))/(p*q)=(p-1) => (p-1)+1 = p or (p-1)*q=p*q*(q-1)=>((-p)*q)/(p*q)=(q-1) => (q-1)+1 = q Here there's a mistake: p*(q-1) != p*q*(p-1) mod N. in fact, let N = 2*3. 2*2 = 4 ! = 6*1 = 0!!! Beeing this assumption wrong, all the remaining demostration is obviously false...
ok, if your consequences are right, could you disprove this gypothesis? Gypothesis: Let N = p*q = A1*B1 + A2*B2... + An*Bn Then exists some subset(A1...An) and respective subset(B1...Bn), which satisfies for equality: A1*B1+A2*B2...+An*Bn = p*q and: A1*(-B1)+A2*(-B2)...+An*(-Bn) = p*(-q)=p*q*(p-1) or A1*(-B1)+A2*(-B2)...+An*(-Bn) = (-p)*q=p*q*(q-1) in terms of this gypothesis, could you really prove: there are no one subsets (A1..An) and respective (B1...Bn) which satisfies equality: A1*(-B1)+A2*(-B2)...+An*(-Bn) = p*(-q)=p*q*(p-1) or A1*(-B1)+A2*(-B2)...+An*(-Bn) = (-p)*q=p*q*(q-1) ? Another example in terms of gypothesis: 35 = 2^2*2^3 + 2*1 + 1 then one of possible subsets of 35 is: 4*8 + 2*1 + 1 (4,2,1) and (8,1,1) try one of possible cases for test subsets (A1...An) and (B1...Bn): 4*(35-8)+2*(35-1)+1*(-1) = 4*27 + 2*34 + 1*(34) = 108 + 102 = 210 then, 210 / 35 = 6 6+1=7 gcd(35,7)=5 Gypothesis is right (or written above is exception?) Your sample: 6 = 4 + 2 => 1*4 + 2*1 1*(6-4)+2*(6-1)=12 Divide result by 6: 12/6 = 2 Add one for 2: 2+1 = 3 Test: gcd(6,3)=2 Any other samples needed? More over, while no one present valid proof of incorrectness, it is correct, right? <Link.asp?CardId=69;6e;63;6f;72;72;65;63;74;6e;65;73;73;0;4c;69;6e;67;76;6f;55;6e;69;76;65;72;73;61;6c;20;28;45;6e;2d;52;75;29> Has somebody more constructive ideas?
_______________________________________________ Full-Disclosure - We believe in it. Charter: http://lists.grok.org.uk/full-disclosure-charter.html Hosted and sponsored by Secunia - http://secunia.com/
Current thread:
- Rapid integer factorization = end of RSA? Eugene Chukhlomin (Apr 26)
- Re: Rapid integer factorization = end of RSA? Stanislaw Klekot (Apr 26)
- Re: Rapid integer factorization = end of RSA? Kurt Buff (Apr 26)
- Message not available
- Re: Rapid integer factorization = end of RSA? e.chukhlomin (Apr 26)
- Re: Rapid integer factorization = end of RSA? Valdis . Kletnieks (Apr 26)
- Re: Rapid integer factorization = end of RSA? Pavel Kankovsky (Apr 27)
- Re: Rapid integer factorization = end of RSA? e.chukhlomin (Apr 26)
- <Possible follow-ups>
- Re: Rapid integer factorization = end of RSA? Eugene Chukhlomin (Apr 26)
- Re: Rapid integer factorization = end of RSA? Stanislaw Klekot (Apr 26)
- Re: Rapid integer factorization = end of RSA? virus (Apr 26)
- Re: Rapid integer factorization = end of RSA? Brendan Dolan-Gavitt (Apr 26)
- Re: Rapid integer factorization = end of RSA? virus (Apr 26)
- Re: Rapid integer factorization = end of RSA? Stephan Gammeter (Apr 26)
- Re: Rapid integer factorization = end of RSA? ShadowGamers (Apr 26)
- Re: Rapid integer factorization = end of RSA? Peter Kosinar (Apr 26)